أنظم لمتآبعينا بتويتر ...

آو أنظم لمعجبينا في الفيس بوك ...
قديم 03-24-2012, 03:07 PM   #1

| عضو |




Paint بحث عن الدوال الحقيقية في الرياضيات






الدوال الحقيقية الرياضيات


الأعداد الحقيقية ح ومداها مجموعة جزئية من مجموعة
الأعداد الحقيقية ح ويتوقف على معاملات الحدود في قاعدة الاقتران :


السينات أو في اتجاه محور الصادات
الدالة التربيعية ( دالة الدرجة الثانية ) .
قاعدتها د(س ) = أس2 + ب س + جـ ,
ح 0 , س  ح , أ أ , ب, جـ
المجال حح المدى
تمثل بيانيا : قطع مكافئ محور // ص
رأسه ( - ب/2أ , د ( - ب/2أ )) و نحدد الفتحة و فق أ حيث

[ المدى = [ د ( -ب/2أ , 
2- أ < فتحة القطع نحو ص-0
 , د ( -ب/2أ ) ]المدى = ] -
نحدد إشارة الدالة باستخدام المميز :

إشارة الدالة نفس إشارة معامل س 0 2- ب2 – 4 أجـ دائما ما عدا جذر الدالة فإن د ( س ) = 0
مثال :
تمرين 7صـــ172 :
أ‌- د ( س ) = س2- س – 6
الحل :
الدالة تربيعية مجالها ح , تمثل قطع مكافئ لتحديد الإشارة من ق :
ب – 4أجـ = 1- 4 * 1 * 1 – 6 = 25 > 0
س2-س -6 = 0 بوضع د ( س ) = 0 
س = 3 , س= -2 , أ = 1 > 0
f ( x ) = a x2 + b x + c حيث 1- أ > فتحة القطع نحو0 ص+ 1- ب2 – 4أجـ > إشارة د (0 س ) نفس إشارة أ ما عدا بين جذري الدالة فتكون إشارتها عكس إشارة أ ( معامل س2 )


على خط الأعداد :



حيث الدالة عكس إشارة أ ( معامل س2 ) بين جذري الدالة و نفس إشارة أ خارج الجذرين .
, -2 ] [ ب ] -  [ 3 ,  س  0  د ( س ) 
د ( س ) < ] – 2 , 3 [ س 0
تطبيق :

م = ب2 – 4أجـ = 16- 4 * 1 * 4 = 0
أ = 1 > الدالة لها نفس إشارة أ على0
ح - }صفر الدالة {س
نضع د (س ) = 0 س2 – 4س + 4 = 0
س = 2( س – 2 ) ( س – 2 ) = 0 
د ( س ) > ح - } 2 { س 0
2- د ( س ) = س2 + س + 1
م = ب2- 4أجـ = 1 – 4 * 1 * 1 = - 3 < د ( س ) ليس للدالة جذور في ح 0 > 0 ( نفس إشارة أ )
ح حيث أ = 1 س  > 0
تمرين 7صــ172
ب) ( 5- س ) ( س – 1 ) = د ( س )
ب2-4أجـللدالة جذران في ح >0 بوضع
س = 1 , س = 5( س – 1 ) ( -س + 5 ) = 0
إشارة أ = - 1 < 0
1- د ( س) = -4 س + س2 + 4



د( س ) > ] 1 , 5 [ س 0
د ( س ) < , 1 [ ] -  [  ] 5 ,  س 0
عندما س = 1 , س = 5د ( س ) = 0
تمارين للطالبات :



- دالة كثيرة الحدود :
تكتب على الصورة :
- د ( س) = أ س + أ س + 0000 + أ س + أ
ك و هي من الدرجة ن 0 , ن أ ن
حمجالها = ح و مجالها المتعامل = ح و المدى
مجالها = مجال البسط - } أصفار المقام {
مثال :
عيني المجال لكل من :




مجالها = ح - } 1 , - 2 {
تطبيق :
د ( س ) = 0س2+4/ س2+5 الدالة معرفة بشرط س2+ 5

مجال د ( س ) = ح
1- د ( س ) = 2س2 + 3س + 1 1- د ( س) = س +1/س-4 الدالة معرفة بشرط


1- إذا كان ن عدد فردي مجال الدالة = ح .

أمثلة و تطبيقات :
عيني مجال الدوال الجذرية التالية :


المجال = [ 0 , [
الدالة معرفة بشرط : 5 – س 5- س 3- د ( س ) = 0
, 5 ] المجال = ] -  5  س 
9-س24- د ( س) =
- 3 3  | س |  3 س 
[ -3 , 3 ] مجال الدالة س 
س2- 95- د ( س) =

- 3 3 أو س  س  3  س 
المجال = , - 3 ] ] -  [ [ 3 ,
ح - س  الدالة معرفة  ] -3 , 3 [
س2 – 3س + 46- د ( س ) =

ن ( س ) إشارة المقدار م = ب2-4أجـ = -7 < 0
للمقدار نفس إشارة لا توجد جذور في ح 
س2 – 3س + 4أ على ح > ح س 0
لأن أ = 1 > :

الدالة معرفة بشرط : س2 +5س 0 لا+6
ندرس إشارة ( س2 + 5س + 6 )
م= 1 > نضع س2 + 5س +6 = 00
( س +2 ) ( س +3 ) = 0
س = -2 , س = -3 , أ = 1 > 0
< المقدار > 0 المفدار < 0 المقدار > 0
د ( س ) > [ - 2 س 0 , -2 ] ] -  [ ,
ح – 1 ] – 3 , - 2 [ س 
2+ س – س28- د ( س ) =
مجال = [ - 1 , 2 ] يترك للطالبات

الدالة معرفة بشرطين :


مجال 2  س  0 2- س- 2 المقام ح - } 2 {
مجال الدالة = مجال البسط - } أصفار المقام {
[ - }2{= [ 1 ,
8- دالة القياس ( القيمة المطلقة )
صفرقاعدتها د ( س ) = | س | = } س عندما س
} – س عندما س < 0
مجالها = ح و تمثل بيانيا بالرسم :
د(س ) = | س | د 0
ح س  الدالة معرفة 
[المدى = [ 0 ,









مثال :
أعيدي تعريف دالة القياس التالية و عيني مجالها و مداها و مثليها بيانيا ؟
د ( س) = | س – 5 |
الحل :
| س – 5 | = } 5س – 5 عندما س
} – س + 5 عندما س < 5
مجال الدالة = ح
للرسم نكون جدول :
س 3 4 5 6 7
ص 2 1 0 1 2
المدى = [[ 0 ,
تطبيق :
أعيدي تعريف الدالة التالية ثم حددي مجالها و مداها ثم ارسمي المنحنى البياني لها .
د ( س) = | س – 5 | + 3

} – س + 5 عندما س < 5

} – س + 8 عندما س < 5
المجال = ح
للرسم :
س 3 4 5 6 7
ص 5 4 3 4 5
[المدى = [ 3 ,
تمرين للطالبات :
د( س ) = | س + 3 | + | س – 3 | + 2 بيانيا


تطبيق :
د( س ) = | س2 – 4س – 5 | تمرين 1 صــ171
الحل : ندرس إشارة ( س2 – 4س – 5 ) بالمميز
ن = 36 > نوجد الأصفار بوضع0
( س – 5 ) ( س + 1 ) = 0س2 – 4س – 5 = 0
س = 5 , س = - 1 , أ = 1 > 0
< *5 *-1 >-
( ) > 0 ( ) < 0 ( ) > 0
د ( س ) = | س2 – 4س – 5 |
= } س2-4س – 5 عندما س > 5

} س2-4س – 5 عندما س < -1
التمثيل البياني :
مقدار من الدرجة الثانية تحت المقياس يمثل قطع مكافئ محوره // ص و فتحته نحو ص+ لأن أ = 1 > 0 و رأسه ( -ب/2أ ) د (-ب/2أ) )
= ( 2 , 9 ) و يقطع محو س عند ( -1 , 0 ) , ( 5 , 0 )
للرسم نكون جدول :
س - 3 - 2 -1 0 2 3 5 6 7
ص 16 7 0 5 9 8 0 7 16
تمرين 4 صــ172
د ( س ) = } | س2 – 7 س – 8 | عندما س > 8
س – 8








الحل : نعرف المقياس .
أولا : نبحث إشارة ( س2 – 7س – 8 )
س = 8 , س = - 1نضع س2 – 7س – 8 = 0
م > 0 أ = 1 > 0
< *8 *-1 >-


المقدار > 0 المقدار < 0 المقدار > 0
|س2- 7 س – 8 | = } س2- 7س – 8 عندما س > 8
س – 8

= } ( س – 8 ) ( س + 1 ) عندما س > 8
( س – 8 )

= } س+1 عندما س > 8

للتمثيل نكون جدول
[المجال = ح المدى = [ 9 ,
س 10 9 8 7 6
ص 11 10 9 10 11

أهمية الدالة

مكونات الدالة
المجال - المجال المقابل - قاعدة الاقتران

مكونات قاعدة الاقتران الجبرية
اسم الدالة - عنصر من المجال - عنصر من المجال المقابل
مثل
أبو - احمد - هو - د. محمد خالد
او
د ( س ) = س2 + 2 س - 3


ق ( س ) = س + 1 ،





fpe uk hg],hg hgprdrdm td hgvdhqdhj








انشر الموضوع




  رد مع اقتباس


قديم 03-24-2012, 04:58 PM   #2

| عضو |




افتراضي رد: بحث عن الدوال الحقيقية في الرياضيات




يمال العافيه يارب










  رد مع اقتباس

إضافة رد

مواقع النشر (المفضلة)

أدوات الموضوع
انواع عرض الموضوع


المواضيع المتشابهه
الموضوع كاتب الموضوع المنتدى مشاركات آخر رد
بحث عن الرياضيات الدوال أميرة المنتدى البحث العلمي , بحث علمي كامل , تقارير جاهزه 1 03-14-2012 02:19 AM
موقع لشرح دروس الرياضيات , موقع لحل مسائل الرياضيات , موقع لحل تمارين الرياضيات نايف العنزي اخبار التعليم اليوم 110 09-30-2011 03:29 PM
موضوع عن الصداقه الحقيقية بالانجليزي , بحث عن الصداقه الحقيقية بالانجليزي , معلومات عن الصداقه بالانجليزي بنت المطآنيخ البحث العلمي , بحث علمي كامل , تقارير جاهزه 6 06-16-2010 02:03 PM
السعاده الحقيقية البطة سام ديوانيه , ديوانية الاعضاء , ديوانية احتاجك 2 05-22-2010 04:19 PM





الساعة الآن 09:01 AM.


Privacy-Policy-Copyright
Powered by vBulletin® Version
Copyright ©2000 - 2014, vBulletin Solutions, Inc.
Search Engine Friendly URLs by vBSEO 3.5.2



تنبية :كل ما يطرح من مشاركات يمثل رأي كاتبة ولا يمثل رأي إدارة الموقع




تطوير : دكتور ويب سايت